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Self-healing in optics generally refers to the ability to reconstruct itself and restore the original state after encountering
obstacles in the propagation of the light field. In this research, we observe the processes of the wave fields from perfect to
defect in front of the focal plane of the 4f system, finally returning to an intact situation after the plane. According to
simulations and experimental results, there is a minimum self-healing distance for the moiré lattice field that positively
associates with the radius of the defect (obstacle) in the nondiffracting transmission range. Furthermore, it is observed
that the defect self-healing is a process of “repairing the center and then repairing the edges.” These findings can be applied
in areas such as optical imaging, capture, and information processing.
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1. Introduction

In recent years, the remarkable properties of a beam for self-
healing in the nondiffraction range have attracted widespread
attention[1–4]. Self-healing in optics refers to the characteristics
of a beam that can self-reconstruct and return to its initial state
after encountering opaque obstacles, which was first discovered
in the Bessel beam[5], although the concept was not yet formally
proposed at the time. The Bessel beam is an exact solution of the
Helmholtz equation under the 0th-order Bessel function, and its
lateral light intensity distribution does not change with propa-
gation, so it is called a nondiffracted beam[6]. The ideal nondif-
fractive beam has infinite energy and cannot be realized in
actuality. Experimentally, the Bessel beam obtained is an
approximately nondiffractive beam due to the limitation of
the aperture, and its nondiffractive propagation distance Zmax

depends on the size of the aperture[7]. By utilizing geometric
optics, the self-healing was explained by the fact that the obstacle
forms a conical shadow in the direction of propagation, the
scope of which depends solely on the radius of the obstacle.
The light fields will reconstruct the original structure once the
transmission distance exceeds the obstacle shadow[2,8,9].
Beyond the Bessel beams, the self-healing has been expanded

in the nondiffracting beams[1]. Vaity et al.[10] experimentally

confirmed the self-healing properties of a single-ring lattice
beam. The self-reconstruction in this study can be understood
by observing the Poynting vector or the transverse energy flow
in different z planes. Later, the self-healing properties of pillar
array optical fields and high-power discrete vortex beams were
investigated[11,12]. Further, some basic nondiffracting beams
also possess self-healing properties, such as Mathieu beams[13],
transverse parabolic beams[14–16], and beams generated by plane
wave interference of conical wave vectors[17–19]. They all have a
common feature, namely, the spectral components are located
on a circle with a cone-shaped wave vector, and the light field
is essentially superimposed by the cone waves. This rule is sat-
isfying, since it anticipates the self-healing characteristics of
nondiffracting lattice wave fields.
Moiré lattice wave fields are periodic or aperiodic patterns

produced by superimposing periodic fundamental lattice wave
fields with a certain twisted angle[20]. As a kind of discrete non-
diffracting beam, moiré wave fields induced photonic lattices to
exhibit several interesting physical properties, such as defects
(vacancies) and dark singularities[21,22], localization delocaliza-
tion transition[23,24], and spatial solitons[25]. In previous work,
holographic methods for generating moiré wave fields have
been proposed and the nondiffraction properties of the wave
fields have beenmeasured simultaneously[26,27]. The self-healing
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property in the holographically generated moiré wave field is
still a topic to be studied.
In this work, the self-healing properties of holographically

generated moiré lattice wave fields are studied through simula-
tions and experiments. By altering the size, shape, and location
of the defect, the self-healing phenomena are given out, showing
that the minimum self-healing distance of the moiré lattice wave
fields is positively correlated with the radius of the obstacle (or
defect), which conforms to the self-healing law of the Bessel-like
beam[1,28]. In addition, the moiré lattice wave-field propagation
before the back focal plane of the 4f system is also measured.

2. Self-Healing Mechanism and Experimental Methods

2.1. Self-healing mechanism of nondiffracted beam

The conical wave-field dynamics demonstrates the self-healing
mechanism of the nondiffracting beam[8,9], as shown in Fig. 1.
The wave vector of the circular light source is k, and has an angle
θ with the z axis. An opaque obstacle with a radius of R is placed
on the propagation path, forming a conical shelter area (obstacle
shadow) length, Zmin behind the obstacle. The light field behind
the lens is the superposition field of the conical wave. In the
maximum nondiffracted transmission distance Zmax, the
unblocked light waves will reconstruct the original structure
behind the sheltered area[2,8].
Assume that the obstacle is located at z = 0, the complex

amplitude of the incident light field is U0, the complex ampli-
tude of the light field disturbed by the obstacle is UD, and the
complex amplitude of the light field diffused at the complemen-
tary screen (aperture) is UC . According to the Babinet principle,
UD = U0 − UC . UC is inversely proportional to z, according to
the literature[7]. When transmitted to infinity, UC becomes 0,
The intensity of the light field disturbed by an obstacle in the
far-field diffraction region is expressed as limz→∞jUDj2 = jU0j.
Therefore, the initial intensity distribution will be recon-

structed in the far field when the ideal nondiffractive beam is
disturbed by an obstacle. The self-healing range is (Zmin,
Zmax), and the lowest self-healing distance is Zmin if the incident
beam is an ideal nondiffraction beam. According to geometric
relations, we obtain

Zmin =
R

tan θ
: �1�

It can be seen that for a given beam, θ is determined, and the
minimum self-healing distance only depends on the radius R of
the obstacle.
From the viewpoint of wave optics, Aiello et al.[28] rederived

the above mechanism independent of geometric parameters and
obtained the exact solution for the minimum self-healing dis-
tance of the conical wave field,

Z 0
min =

���
2

p R
tan θ

=
���
2

p
Zmin: �2�

The results obtained by the above two methods are highly
consistent. Moreover, this result can be extended to scalar
and vector Bessel–Gaussian beams[28,29]. According to the above
results, some basic self-healing properties of the nondiffracted
lattice wave field are predicted. First, the light field will recon-
struct its original structure within the nondiffracting distance,
as long as the obstacle is not too large. Second, the larger the
obstacle, the longer the minimum self-healing distance.

2.2. Experimental setup

The moiré lattice wave field is generated by using the holo-
graphic method (also known as the one-step imaging method),
a common method for complex interference beams. The exper-
imental device is shown in Fig. 2. The light modulated by the
pure-phase spatial light modulator (SLM) passes through a 4f
system consisting of polarizer P2 and lenses L3, L4 to generate
the desired moiré lattice wave field. A ring filter matches the
spectral distribution and is positioned on the spectral plane of
the 4f system. Finally, the intensity distribution of the wave field
is recorded by a CCD camera near the rear focal plane of the 4f
system. Two orthogonal polarizers, P1 and P2, are used to elimi-
nate background light and enhance the contrast of the wave
field. An obstacle is placed in the path of the beam but is not
required when examining the self-healing of the wave fields with
defects.We just load the phase diagramwith a defect on the SLM

Fig. 1. Self-healing mechanism of the conical wave-fields.
Fig. 2. Schematic of experimental setup on self-healing moiré wave fields.
CCD, charge-coupled device; SLM, spatial light modulator.
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and move the CCD around f 0 (the focal plane of L4) along the z
axis to record the wave field at different positions.

2.3. Theoretical analysis and simulation

In Fig. 2, in the front focal plane of the Fourier transform lens,
there are two groups of six-point light sources that make up a
regular hexagon; one of the hexagons introduces the π phase dif-
ference. Twelve-point light sources are on a circle with a radius
of a. The following 12 combined δ functions can be convolved
with a circle function to represent the light field distribution (U)
of 12-point light sources in the x 0 − y 0 plane,

U�x 0,y 0�=
�X5

n=0

δ

�
x 0 − a cos

�
nπ
3
−
α

2

�
,y 0 − a sin

�
nπ
3
−
α

2

��
eiπ

�
X5
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x 0 − a cos

�
nπ
3
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w

�
, (3)

where α = arctan�
��
3

p
9 �, ⊗ is a symbol of convolution, circ is a

circle function, and w stands for the radius of each source hole.
After passing the Fourier transform lens, the field distribution
(ψ) generated in the focal x − y plane behind the lens is as
follows:

ψ�x, y� =
"X5

n=0

e
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where J1 is the first-order Bessel function, λ is the wavelength of
light, and f is the focal length of the Fourier transform lens. The
optical field of the observation plane can be represented by the
Fraunhofer (Fresnel) diffraction integral when the light trans-
mission distance satisfies Δz > w2

2λ �Δz < w2

2λ�.

3. Experimental Results

The periodic moiré wave field is selected as the test field, and its
self-healing after the obstacle is shown in Fig. 3 (Figs. 4 and 5).
The sizes of the wave field and the obstacle are 3.93mm ×
3.93mm and 0.78mm × 0.78mm, respectively. The CCD cam-
era is positioned at f 0 in the rear focal plane of lens L4 while the
obstacle is placed between L4 and f 0 and moves along the z axis.
When the obstacle is positioned 25 mm in front of the focal
plane (f 0), the center of the wave fields is blocked and there
is a dark region, which is similar in size to the obstacle, and
its edge is distorted due to diffraction, as shown in Fig. 3(a).
When the obstacle is placed 55 mm in front of the focal plane

(f 0), the original wave-field structure can be reconstructed in
the center of the dark area while the distortion range of the edge
of the dark area is expanded, slightly distorting the original
structure, as shown in Fig. 3(b). When the obstacle is farther
away from the focal plane (f 0), such as 90 and 130 mm, the
moiré structure of the blocked area is repaired, and the range
of peripheral distortions continues to expand but the degree
is reduced, as shown in Figs. 3(c) and 3(d), respectively.
Figure 3(d) shows that the self-healing of the light field is com-
plete, where the distance required to repair the information and
energy loss caused by the obstacle of this size is reached. The
above experimental results confirm that as a large-period
two-dimensional light field with a complex structure, the
moiré lattice light field has good nondiffraction and self-healing
properties.
A circular defect with R = 50 μm is introduced in the center of

the phase diagram loaded in the SLM. The simulated and exper-
imental results of the generated light field at f 0 are shown in
Fig. 4(a1); they possess a circular defect corresponding to the
phase diagram. Figures 4(a2)–4(a4) show the experiment results
of the self-healing transmitting over different distances. With
the increase in transmission distance, the six damaged bright
spots in the middle of the honeycomb structure first extend
inward and are then repaired completely. Self-healing can be
achieved by transferring only 25 mm because the defect is small.
Comparing the experimental results shown in Figs. 4(a1)–4(a4),
it was found that the experimental results were highly consistent
with the simulated results. The wave-field patterns for R =
125 μm are shown in Figs. 4(b1)–4(b4). First, the wave field at
the edge of defect extends toward the center, forming a “trestle
bridge” at the defect region, as shown in Fig. 4(b2). Then the
wave field around the defect is darkened and distorted while
the original moiré structure (six bright spots) is repaired in
the center of the defect [Fig. 4(b3)]. Finally, the area around
the defect is repaired, and self-healing is almost completed at
60mm after f 0, as shown in Fig. 4(b4). The simulated and exper-
imental results show that “the larger the defect size, the longer
the transmission distance required to complete the repair[14].”
To verify the universality of self-healing process, the shape

and position of the defect were changed, and the experiment
was repeated to observe the self-healing process. The triangular
defect was formed by removing the unit structure at the center of
the moiré lattice field and its left adjacent and upper left posi-
tions, as depicted in Figs. 4(c1)–4(c4). The self-healing process
is the same as that with circular defects. As the defect area
expanded, the minimum self-healing distance increases to about
70 mm. When the defect with radius of R = 100 μm deviates

Fig. 3. Self-healing of the wave fields with diameters of obstacle of (a) 25 mm,
(b) 55 mm, (c) 90 mm, and (d) 130 mm in front of f0.

Chinese Optics Letters Vol. 21, No. 3 | March 2023

030502-3



from the center of the wave field, the self-healing process is
still from the inside out, independent of the defect location
[Figs. 3(d1)–3(d4)]. It shows that the energy and phase informa-
tion carried in the central region of moiré structures has a
stronger anti-interference ability.
Moiré lattice fields generated by the holographic method

maintain nondiffraction characteristics well in the range of
�f 0 − 6, f 0 � 15� cm[27]. Therefore, the wave field in the nondif-
fracting region that locates in front of f 0 needs to be investigated.
A defect with R = 125 μm is set in the center of the moiré wave
field. The simulation and experimental results of self-healing
of wave fields at different positions before f 0 are shown in
Figs. 5(a1)–5(a4) and 5(b1)–5(b4), respectively. The “trestle”
structure extends inwards from the defect area at 25mm in front
of f 0. At the end of the trestle, six bright spots are reconstructed
at 35 mm in front of f 0. The original moiré structures reappear
in the area around the defect at 60 mm in front of f 0. The mini-
mum self-healing distance in the back of f 0 is 60 mm. The self-
healing of the wave field at �f 0 − 60�mm is not perfect because
of the proximity of the nondiffraction edge. Comparing the
above results with Figs. 4(b1)–4(b4), it is easy to see that the
self-healing results of moiré lattice fields at equal distances in
front of and behind f 0 are similar, indicating that the self-healing
process is symmetric about f 0.

The transmission distance that just completes the self-healing
is called the minimum self-healing distance. To quantify the
relationship between self-healing distance and defect size, we
introduce the similarity degree[30] as

Dp�z� =

hRR
Iwt�ρ, z�Iob�ρ, z�d2ρ

i
2

RR
Iwt�ρ,z�2d2ρ

RR
Iob�ρ,z�2d2ρ

, (5)

where ρ is an arbitrary point in the moiré wave field; Iwt and Iob
stand for the beam intensities without and with obstacles,
respectively; and the angular brackets denote ensemble averag-
ing. Dp = 1 denotes that the intensity distribution of the field
with defects at this position is identical to that without defects.
The simulations of the self-healing processes of various moiré
lattice wave fields (periodic or aperiodic, honeycomb or square)
with defects are shown in Fig. 6, where the 200 mm position is
the second focal plane of the 4f system. Clearly, the self-healing
process is symmetrical about f 0 and requires a longer distance to
complete the repair corresponding to the larger defect. In addi-
tion, the value ofDp for different moiré lattice wave fields is close
when they possess the same defect, indicating the self-healing
process is similar.
Figure 7 shows the experimental measured “Zmin − R”, which

is linearly related to the defect radius. It can be considered that

Fig. 4. Self-healing of the wave fields with small defects. (a1) Wave field with
defects at R = 50 μm; (a2)–(a4) wave-field experimental results at 10, 15, and
25 mm behind the focal plane; (b1) wave field with defects at R = 125 μm; (b2)–
(b4) wave-field experimental results at 25, 35, and 60 mm behind the focal
plane; (c1) wave-field experimental diagram of a triangular defect;
(c2)–(c4) wave-field experimental diagram at 25, 35, and 70 mm behind f0;
(d1) wave field with defect position far from the center; (d2)–(d4) wave-field
experimental results at 20, 30, and 50 mm behind the focal plane. Insets (the
blue diagrams in the upper right corner) are the simulated wave-field
intensities.

Fig. 5. Intensities of the wave field in front of f0. (a1)–(a3) Simulated self-heal-
ing results at 60, 35, and 25 mm in front of f0; (a4) wave field with a defect at f0;
(b1)–(b4) experimental results at the corresponding positions.

Fig. 6. Simulation of the self-healing process. The solid line describes the self-
healing of two periodic moiré lattice wave fields (honeycomb). The black dot-
ted and red dotted lines indicate the self-healing of periodic square moiré
lattice wave fields and aperiodic moiré lattice wave fields, respectively.
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the minimum self-healing distance of moiré wave fields (peri-
odic or aperiodic, honeycomb or square) is proportional to
the radius of the defect (obstacle) in the diffraction-free trans-
mission range. However, when the transmission distance
approaches or exceeds the nondiffractive range, the repair effect
worsens. Also, the minimal self-healing distance is affected
slightly by the periodicity and shape of the moiré lattice wave
fields.

4. Conclusion

In conclusion, holographic technology is utilized to design
moiré lattice wave fields with defects. The moiré lattice wave
fields can recover their original structure at a certain distance
after being disturbed by obstacles. The self-healing properties
of defects with different sizes, positions, and shapes are studied.
In nondiffractive transmission, the self-healing process and
principles of the moiré lattice wave fields are summarized as fol-
lows. (i) The structure at the center of the defect is repaired first,
and then the structure at the edge is repaired. (ii) The minimum
self-healing distance Zmin is positively correlated with the radius
of the defect. (iii) The self-healing process of moiré wave fields is
symmetric concerning f 0 (the second focal plane of the 4f
system).
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